Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
i(0) → 0
+(0, y) → y
+(x, 0) → x
i(i(x)) → x
+(i(x), x) → 0
+(x, i(x)) → 0
i(+(x, y)) → +(i(x), i(y))
+(x, +(y, z)) → +(+(x, y), z)
+(+(x, i(y)), y) → x
+(+(x, y), i(y)) → x
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
i(0) → 0
+(0, y) → y
+(x, 0) → x
i(i(x)) → x
+(i(x), x) → 0
+(x, i(x)) → 0
i(+(x, y)) → +(i(x), i(y))
+(x, +(y, z)) → +(+(x, y), z)
+(+(x, i(y)), y) → x
+(+(x, y), i(y)) → x
Q is empty.
We use [23] with the following order to prove termination.
Lexicographic path order with status [19].
Quasi-Precedence:
[i1, 0] > +2
Status: i1: [1]
+2: [2,1]
0: multiset